Brève Histoire du Corsair (2)

 

Shown above is a F4U Corsair from US Marines VMF-511, USS Block Island

 

It was the British who finally worked out a method of landing the Corsair on their carriers in spite of the visibility problems caused by the long nose. Instead of the normal downwind-crosswind-final approach method, the British simply turned downwind, then made a slow, continuous curve which aligned the Corsair with the deck only at the last second before the aircraft touched down and trapped. This method allowed the pilot to keep the Landing Signals Officer in view right up to the moment the plane was over the fan-tail where the LSO gave the sign to either "cut" or make another attempt.

To alleviate the problem of oil and hydraulic fluid smearing the windshield, the Brits simply wired shut the cowl flaps across the top of the engine compartment, diverting the oil and hydraulic fluid around the sides of the fuselage. Numerous other simple, effective alterations were devised to alleviate the dreadful stall characteristics, landing bounce and tailhook problems (among others), and these modifications were incorporated into the production line. In 1944 the US Navy decided to again try landing the F4U on carriers, and this time succeeded. It turned out to be an extremely wise decision.

As the nature of the war changed, the Corsair also changed. There were seven different dash numbers, some built exclusively for foreign countries (the F4U-7 for the French Aeronavale), and one was never built at all (the F4U-6). Some dash numbers had letter suffixes designating different changes in the airframe, weapons or engine. In addition to Vought, the Corsair was built by the Goodyear Aircraft Company, with a lesser production run by Brewster Aeronautical Corporation.

 

VMF-214 on Turtle Bay fighter strip, Espiritu Santo, New Hebrides. VMF-214 poses for a group picture before leaving for Munda. Colonel Gregory Boyington's Black Sheep Squadron.

  

There were also night fighter versions (designated by the suffix letter "N"), and photo versions (with the suffix "P"). The Corsair underwent over 950 major engineering changes over is lifetime though none changed the distinctive profile of the F4U. Most often, production aircraft were simply pulled off the assembly line and used as test beds. Some of these were designated prototypes with the prefix "X" (such as the "XF4U-3"). By the end of Corsair production 1952, there were 16 separate models on the books.

Depending on which Air Squadron you were in, the F4U had many nicknames: "Hose Nose", "Bent Wing Bird", "Hog" and "Ensign Eliminator", the latter due to it’s stall and landing characteristics. Under the right circumstances, the wing mounted air intakes caused a pronounced whistling sound. For that reason, Japanese ground troops called it "Whistling Death".

Several varieties of the Pratt-Whitney R-2800 Double Wasp radial engine were used in the Corsair. Some used a water-methanol injection to increase the power for short sprints. This was called "War Emergency" power and had a suffix "W" after the dash number of the engine. During the Korean War, there were modifications to cope with the extreme cold encountered in that theater. These were designated with the suffix "L" (for "Low" [temp]).

  

US Navy, VMF-121


The XF4U-1 was of course the original prototype with a greenhouse type canopy and the Pratt-Whitney R-2800-4 radial which delivered 1,850 hp (1,380.6 kW) for take-off and 1,460 hp (1,089.6 kW) at 21,500 feet (6,553.2 meters). It had two .50 cal. (12.7 mm) Colt-Browning machine guns mounted in the nose and each wing held two more for a total of six. Its top speed was 405 mph (651.77 kph). It weighed in at a maximum 10,074 pounds (4,569.4 kilograms) and had a range of 1,070 miles (1,722 km).

The F4U-1 was the first production type. It started rolling off the assembly lines in September 1942. The production "dash one" had some changes made to the canopy for better vision to the rear, though this would continue to be a problem until the advent of the "bulged" canopy introduced in the F4U-1A.

The two Colt-Browning .50s mounted in the nose of the prototype were removed and all six machine guns were mounted in the wings outside the propeller arc which eliminated the need for synchronization. The dash one also featured the Pratt-Whitney R-2800-8 engine. Some were produced with "-8W" engines. Both engines produced 2,000 hp (1,492.5 kW) for take-off, with the water injected -8W producing an extra 250 hp (186.6 kW) for war emergency. Suffix letters for the dash one Corsair ran from "A" to "D" and the "P" photo model.

 

 
Five-inch rockets being loaded under the wing of an F4U of MAG-33. Just before take-offs, the safety pins are removed and the rockets are armed. Okinawa, Japan. 

 

F4U-2 was a night fighter version of the dash one. For reasons known only to the US Navy, instead of calling it the "F4U-1N" (a method it used on all succeeding models), they gave it the dash two designation. The dash one was transformed into the dash two by modifying the starboard wing and the radio bay in the fuselage to accept the "XAIA" ("Experimental Airborne Intercept [model] A") radar which was hand-built.

The starboard wing was modified by removing the outboard .50 cal. (12.7 mm) Colt-Browning and altering the wing to support the radar scanner. The radio was removed and placed beneath the pilot’s seat and the radar set was placed in the radio bay. There were other slight modifications such as bore sighting the guns to converge fire at 250 yards (228.6 m) and were angled slightly upward so the pilot could fire without bouncing around in the target’s slip-stream. There were no tracers loaded so as not to blind the pilot when firing. The engine was fitted with exhaust flame dampers. After radar installation, the aircraft weighed 235 pounds less than the standard dash one.

The F4U-3 was a bump in the evolution of the Corsair. The US Navy had for many months kicked around the idea of a high altitude (40,000+ ft) (12,192+ m) version of the F4U. Toward the latter half of 1943, they approached Vought with the scheme and Vought designer Russell Clark went to work molding the Corsair fuselage around the XR-2800-16 Double Wasp engine which was fitted with two Bierman model 1009A turbo-superchargers.

At first the project looked very promising with the engine producing 2000 hp (1,492.5 kW) at 40,000 ft (12,192 m). But defects in the turbo-superchargers caused the project to be dropped after a few copies had been produced and tested. The dash three could be identified by a large intake tube fitted to the belly below the engine.